
1 3

J Ind Microbiol Biotechnol (2015) 42:1419–1425
DOI 10.1007/s10295-015-1648-z

SHORT COMMUNICATION

Enhanced production of (R,R)‑2,3‑butanediol by metabolically 
engineered Klebsiella oxytoca

Jong Myoung Park1 · Chelladurai Rathnasingh1 · Hyohak Song1 

Received: 29 April 2015 / Accepted: 22 June 2015 / Published online: 15 August 2015 
© Society for Industrial Microbiology and Biotechnology 2015

Introduction

2,3-Butanediol (2,3-BD), one of the products of fermen-
tation, is receiving increasing attention as a promising 
platform compound due to its extensive industrial appli-
cations. The dehydration of 2,3-BD yields 1,3-butadiene, 
a substance used extensively in synthetic rubber produc-
tion [2, 8]. The other dehydration product of 2,3-BD, 
methyl ethyl ketone, serves as an effective fuel additive 
as well as an industrial solvent for resins and lacquers 
[2, 8, 28, 32]. 2,3-BD can also be dehydrogenated read-
ily to acetoin and diacetyl, both used as flavoring agents 
for food [1]. Despite its great potential for industrial 
applications, the use of 2,3-BD itself is very limited by 
the isomer type. 2,3-BD exists in three stereoisomers, 
the meso-, (R,R)-, and (S,S)-forms, and each stereoiso-
mer has different physiochemical properties [4, 5, 17]. 
For example, the freezing point of (R,R)-2,3-BD is lower 
than −30 °C but the freezing point of meso-2,3-BD is 
higher than 10 °C in around 50 % 2,3-BD content [4, 5, 
17]. This makes the transportation and storage of meso-
2,3-BD difficult for its industrial applications. meso- 
and (R,R)-2,3-BD have similar applicability potential 
in chemical industry sectors, such as 1,3-butadiene, 
methyl ethyl ketone, printing inks, spandex, and soften-
ing agents [2, 8, 32]. However, their applications are 
strongly limited to some special sectors by their physi-
ochemical properties. For example, only (R,R)-2,3-BD 
has an applicability in agricultural industry, which is to 
activate plants’ own defense systems against diseases, 
drought, and the elements [25, 26]. In addition, (R,R)-
2,3-BD can be used as an antifreeze agent due to its low 
freezing point [7]. On the other hand, the physiochemi-
cal activity of (R,R)-2,3-BD might restrict its application 
to cosmetics and personal cares.
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Many bacterial species have an ability to synthesize 2,3-
BD as a fermentation product via homologous pathways 
with three enzymes: acetolactate synthase, acetolactate 
decarboxylase, and 2,3-BD dehydrogenase [2, 3, 8, 10, 12, 
13, 24, 28, 29, 31, 32]. However, the production ratio of 
2,3-BD stereoisomers varies considerably depending on 
the bacterial species. Klebsiella oxytoca, K. pneumoniae, 
Enterobacter aerogenes, and Serratia marcescens produce 
mainly meso-2,3-BD, while Bacillus subtilis yields meso- 
and (R,R)-2,3-BD concurrently [2, 33]. In Panebacillus 
polymyxa, (R,R)-2,3-BD is produced as a major product 
making up a 98 % of the total weight of 2,3-BD [20, 31]. 
On the other hand, Brevibacterium saccharolyticum has 
(S,S)-2,3-BD dehydrogenase, which exclusively converts 
acetoin to (S,S)-2,3-BD [31].

We selected K. oxytoca strain as host strain for the over-
production of (R,R)-2,3-BD. To the best of our knowl-
edge, the highest titer of 2,3-BD achieved by P. polymyxa 
is 111 g/L after 54 h fed-batch fermentation in a medium 
containing 60 g/L yeast extract [9]. However, P. poly-
myxa could produce only about 70 g/L (R,R)-2,3-BD in a 
medium containing 5 g/L yeast extract. Although P. poly-
myxa can produce (R,R)-2,3-BD with a high enantioselec-
tive purity, the overall productivity and cell density should 
be increased in a cheap medium containing corn steep liq-
uor or whey for its industrial application. We improved K. 
oxytoca strain by genetic manipulation for (R,R)-2,3-BD 
production because the overall 2,3-BD productivity and 
cell growth were not much different in the medium contain-
ing yeast extract and corn steep liquor.

Klebsiella oxytoca has been considered a convinc-
ing candidate for the production of 2,3-BD because of its 
exceptional performance [2, 3, 8, 10–14, 24, 28, 32]. In 
order to enhance the production of 2,3-BD but reduce the 
formation of byproducts in K. oxytoca, many studies seek-
ing strain improvement and fermentation optimization have 
been executed [10, 11, 13, 16, 23]. Recently, we developed 

a metabolically engineered K. oxytoca strain, in which ldhA 
and pflB genes were deleted (K. oxytoca ΔldhA ΔpflB), 
based on its in silico simulation using a genome-scale met-
abolic model of K. oxytoca, KoxGSC1457 [22, 23]. In the 
K. oxytoca ΔldhA ΔpflB strain, the overall 2,3-BD yield on 
glucose increased remarkably (0.45 g/g, 90 % of theoretical 
maximum yield). The final titer and productivity of 2,3-BD 
were achieved by the optimization of the fed-batch fermen-
tation strategy up to 113 g/L and 2.1 g/L/h, respectively, in 
which more than 90 % of the total weight of 2,3-BD was 
meso-2,3-BD [23].

As expected, meso-2,3-BD-rich solution of high purity 
(>95 %) was shown to be more frequently frozen at nor-
mal cold weather temperatures than (R,R)-2,3-BD-rich 
solution (Fig. 1). Therefore, in this study, we introduced 
(R,R)-2,3-BD dehydrogenase from P. polymyxa into the K. 
oxytoca ΔldhA ΔpflB strain in order to widen the poten-
tial applications of 2,3-BD. The overexpression of (R,R)-
2,3-BD dehydrogenase was conducted further to enhance 
(R,R)-2,3-BD production. The final engineered strain, K. 
oxytoca ΔldhA ΔpflB ΔbudC::PBDH (pBBR-PBDH), 
could produce up to 106.7 g/L of (R,R)-2,3-BD together 
with 9.3 g/L of meso-2,3-BD in the fed-batch fermentation. 
The yield and productivity of (R,R)-2,3-BD were compara-
ble to those of meso-2,3-BD obtained from the K. oxytoca 
ΔldhA ΔpflB strain.

Materials and methods

Bacterial strain and plasmid

The K. oxytoca KCTC12133BP strain (Korean Col-
lection for Type Cultures, Daejeon, Korea) was used in 
this study. For overexpression of (R,R)-2,3-BD dehy-
drogenase, pBBR1MCS plasmid was used [19]. The 
pBBR1MCS plasmid contains a multiple cloning site, 

Fig. 1  The property of freezing 
for the (R,R)-2,3-BD-rich and 
meso-2,3-BD-rich solution of 
high purity (>95 %) at a 26 °C 
and b 5 °C. In the normal 
temperature on cold weather, 
the meso-2,3-BD-rich solution 
can be more often frozen than 
(R,R)-2,3-BD-rich solution. 
This property of meso-2,3-BD 
can bring about the difficulties 
for transportation and storage in 
industrial processes
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mob gene, lacZα fragment, and chloramphenicol resist-
ance gene.

Construction of recombinants for (R,R)‑2,3‑BD 
production

In-frame gene deletions and the replacement of an endog-
enous gene with an exogenous gene were carried out based 
on the sacB homologous recombination system using over-
lapped polymerase chain reaction (PCR) products. The 
overlapped products of the two fragments, in which each 
~500 bp upstream and downstream regions of the target 
gene were amplified and overlapped by PCR, were trans-
formed into the competent cells of the K. oxytoca strain by 
electroporation. The colonies were then selected in Luria–
Bertani (LB) chloramphenicol (25 mg/L) plates at 42 °C, 
and the integrated cassette was cured by sacB expression 
under sucrose pressure. Integration and excision were con-
firmed in all mutants by PCR screening with genome-spe-
cific primers.

The pBBR-PBDH plasmid (pBBR1MCS containing 
the gene encoding (R,R)-2,3-BD dehydrogenase from P. 
polymyxa) was also transformed into the competent cells 
of the K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH strain 
by electroporation. Then, the K. oxytoca ΔldhA ΔpflB 
ΔbudC::PBDH (pBBR-PBDH) strain was selected in LB 
chloramphenicol (25 mg/L) plates at 37 °C.

Culture medium

Culture medium used in batch and fed-batch fermenta-
tions contained (per liter) yeast extract (Becton–Dickin-
son, Le Pont de Claix, France), 5 g; MgSO4·7H2O, 0.25 g; 
(NH4)2SO4, 6.6 g; K2HPO4, 8.7 g; KH2PO4, 6.8 g; trace 
metal solution, 10 mL. The trace metal solution con-
tained (per liter) FeSO4·7H2O, 5 g; ZnSO4·7H2O, 0.1 g; 
MnSO4·H2O, 0.1 g; CaCl2·2H2O, 0.1 g; HCl, 10 mL.

Culture conditions

For inoculum preparation, the suspended cells from sin-
gle colonies on LB agar (Difco Laboratories, Detroit, MI) 
plates were precultured in 20 mL test tubes containing 
5 mL culture medium (10 g/L d-glucose) for 5 h. 1 mL 
of the preculture was then transferred to a 500 mL Erlen-
meyer flask containing 300 mL culture medium (10 g/L 
d-glucose), and cultivated to an optical density of 1.5–2.0 
at 600 nm (OD600). The tube and flask cultivations were 
conducted in a rotary shaker at 150 rpm and at 37 °C 
(JEIO Tech. Co. SI-900R). 300 mL of the seed culture was 
then transferred to a 5 L bioreactor. Batch fermentations 
were performed in a 5 L BIOFLO®& CELLIGEN®310 
bioreactor (New Brunswick. Scientific Co., Edison, NJ) 

containing 3 L culture medium (90 g/L d-glucose). The 
bioreactor was continuously aerated through a 0.2-µm 
membrane filter at a flow rate of 1 vvm (air volume/work-
ing volume/minute). The temperature was maintained at 
37 °C. The pH was controlled at 6.5 ± 0.1 by the auto-
matic feeding of NH4OH (28 % vol/vol). Foaming was 
controlled by the addition of Antifoam 289 (Sigma, St. 
Louis, MO). As needed, chloramphenicol was added at 
25 mg/L in the medium. All bioreactor experiments were 
performed at least three times independently, and the rep-
resentative results are shown in the figures. Fed-batch 
fermentations were performed under the same conditions 
as the batch fermentations except for the feeding of glu-
cose into the fermentor to maintain the concentration at 
10–60 g/L. For the fed-batch fermentation, the agitation 
speed was maintained at 450 rpm until the concentra-
tion of acetoin reached about 10 g/L, and then switched 
to 350 rpm [23]. Samples were periodically taken for 
the measurement of OD600 as well as for the determina-
tion of metabolite concentrations. After centrifugation at 
13,200×g for 5 min, the resulting supernatant was used to 
measure the concentrations of glucose and metabolites.

Analytical procedures

(R,R)-2,3-BD, meso-2,3-BD, and (S,S)-2,3-BD were 
determined by a gas chromatograph with flame ionization 
detector (GC-FID; HP 6890 series, Hewlett Packard, Palo 
Alto, CA, USA) equipped with a HP-chiral 20ß column 
(30 m, 0.32-mm internal diameter, 0.25-μm film thick-
ness; Agilent Technologies, Waldbronn, Germany). The 
oven temperature was initially set at 40 °C for 5 min. It 
was increased with a gradient of 15 °C/min until it reached 
160 °C, at which it was kept for the final 2 min. The tem-
perature of the injector and detector was set at 230 °C. 
Argon was used as the carrier gas and run through the col-
umn at a flow rate of 2 mL/min. The sample injection vol-
ume was 0.2 μL.

The concentrations of d-glucose and metabolites, includ-
ing meso-2,3-BD, (R,R)-2,3-BD, formic acid, ethanol, ace-
tic acid, lactic acid, succinic acid, and acetoin, were also 
determined by a high-performance liquid chromatography 
(HPLC) equipped with UV/VIS and RI detectors (Agilent 
1260 series, Agilent Technologies). An Aminiex HPX-87H 
column (300 mm × 7.8 mm, Bio-Rad, Hercules, CA) was 
isocratically eluted with 0.01 N H2SO4 as a mobile phase 
at a flow rate of 0.6 mL/min and at 80 °C. The OD600 was 
measured using UV–Vis spectrophotometry (DR5000, 
Hach Company, CO) to monitor cell growth. Cell concen-
tration, defined as dry cell weight (DCW) per liter of cul-
ture broth, was calculated from the pre-determined standard 
curve relating OD600 to DCW (1 OD600 = 0.3877 ± 0136 g 
DCW/L) [16].
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Results and discussion

Strain development for the production of (R,R)‑2,3‑BD 
based on K. oxytoca ΔldhA ΔpflB

We used the K. oxytoca ΔldhA ΔpflB strain as a base strain 
for the development of a novel strain capable of (R,R)-
2,3-BD production. In previous work, the metabolic fluxes 
toward 2,3-BD were maximized, while the metabolic fluxes 
of byproduct production were minimized in the K. oxytoca 
ΔldhA ΔpflB strain [23]. A 2,3-BD dehydrogenase encoded 
by the budC gene in K. oxytoca catalyzes the formation of 
meso-2,3-BD from acetoin. However, P. polymyxa yields 
mostly (R,R)-2,3-BD (>98 % of total 2,3-BD) [31]. Con-
sequently, the native budC gene in the K. oxytoca ΔldhA 
ΔpflB strain was deleted firstly by homologous recombina-
tion. Then, the gene encoding (R,R)-2,3-BD dehydrogenase 
from P. polymyxa was introduced into the chromosomal 
site of the deleted budC gene.

The batch and fed-batch fermentations of the constructed 
K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH strain were car-
ried out to investigate its ability for (R,R)-2,3-BD produc-
tion. The GC analysis showed that the K. oxytoca ΔldhA 
ΔpflB ΔbudC::PBDH strain could produce 2,3-BD with 
over 90 % (R,R)-2,3-BD (Fig. 2). However, the final titer, 
yield, and productivity of total 2,3-BD (88 g/L, 0.32 g/g, 
and 1.6 g/L/h) were significantly lower than those of the 
K. oxytoca ΔldhA ΔpflB strain (113 g/L, 0.45 g/g, and 
2.1 g/L/h) under the same fermentation conditions (Fig. 3, 
[23]). It is most likely that the expression level of the intro-
duced (R,R)-2,3-BD dehydrogenase was not high enough 
to completely metabolize the reinforced metabolic fluxes 
from pyruvate toward 2,3-BD synthesis via metabolic 
engineering in the K. oxytoca ΔldhA ΔpflB strain. Based 
on the observation that K. oxytoca ΔldhA ΔpflB strain and 
the engineered final strain produced similar amount of total 
2,3-BD (113 and 116 g/L), the properties of 2,3-BD dehy-
drogenase like cofactor specificity and kinetics seem not 
much different from K. oxytoca and P. polymyxa. This can 
be supported by the observation that acetoin, the direct pre-
cursor of 2,3-BD, accumulated more in the fed-batch fer-
mentation of the K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH 
strain (15.5 g/L) than that of the K. oxytoca ΔldhA ΔpflB 
strain (4.7 g/L, [23]).

Gene overexpression for the enhancement 
of (R,R)‑2,3‑BD production

In order to solve the metabolic interruption, we 
attempted to implement overexpression of (R,R)-2,3-BD 
dehydrogenase using a pBBR1MCS plasmid [19] in 
the K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH strain. 
The gene encoding (R,R)-2,3-BD dehydrogenase from 

P. polymyxa was cloned into the multiple cloning site 
in the pBBR1MCS plasmid, and then the cloned plas-
mid was transferred into the K. oxytoca ΔldhA ΔpflB 
ΔbudC::PBDH strain by electroporation. Thus, the K. 
oxytoca ΔldhA ΔpflB ΔbudC::PBDH (pBBR-PBDH) 
strain was constructed.

Fed-batch fermentation using the K. oxytoca ΔldhA 
ΔpflB ΔbudC::PBDH (pBBR-PBDH) strain was then 
performed to evaluate the performance of (R,R)-2,3-BD 
production. The final titer, yield, and productivity of total 
2,3-BD were reached up to 116 g/L of total 2,3-BD [(R,R)-
2,3-BD, 106.7 g/L; meso-2,3-BD, 9.3 g/L], 0.40 g/g, and 
3.1 g/L/h, respectively (Fig. 3). The results were 31.8 % 
(concentration), 25 % (yield), and 93.8 % (productivity) 
higher than those obtained from the fed-batch fermentation 
of the K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH strain. The 
formation of acetoin also decreased from 15.5 g/L in the 
K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH strain to 8.9 g/L 
in the K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH (pBBR-
PBDH) strain. These results strongly support the assump-
tion that the expression level of (R,R)-2,3-BD dehydro-
genase was not enough to completely metabolize acetoin 
accumulated by reinforced metabolic fluxes from pyruvate 
by means of the deletion of the ldhA and pflB genes. This 
caused the interruption of the metabolic fluxes originated 
from the consumption of glucose and glycolysis. Conse-
quently, the cell growth rate and 2,3-BD production rate 
of K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH strain were 
also decreased (Fig. 3). The interrupted metabolic fluxes 
were solved by improving the expression level of (R,R)-
2,3-BD dehydrogenase. The K. oxytoca ΔldhA ΔpflB 
ΔbudC::PBDH (pBBR-PBDH) strain metabolized ace-
toin to 2,3-BD more intensively without the significant 
metabolic bottleneck seen in the K. oxytoca ΔldhA ΔpflB 
ΔbudC::PBDH strain. With the efficient consumption of 
glucose, the cell growth and 2,3-BD production rates were 
increased in the K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH 
(pBBR-PBDH) strain.

The K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH (pBBR-
PBDH) strain excreted 8.9 g/L of acetoin into culture 
medium (Fig. 3). The reaction of 2,3-BD dehydrogenase 
is a reversible reaction, which could be mainly con-
trolled by NADH/NAD ratio because 1 mol NADH per 
reaction is required to convert 1 mol acetoin to 1 mol 
2,3-BD. In general, the metabolism involved in the sup-
ply of NADH (e.g., TCA cycle) slows down during the 
stationary phase of fermentation which leads to the lim-
ited availability of NADH [18, 21]. Thus, it is a reason-
able to assume that the accumulation of acetoin resulted 
from the NADH-limited reaction of acetoin to 2,3-BD 
[6].

The K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH 
(pBBR-PBDH) strain still formed a significant level of 
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meso-2,3-BD (9.3 g/L). Although the reaction of 2,3-BD 
dehydrogenase encoded by the budC gene has been known 
as a major route to produce meso-2,3-BD in K. oxytoca, 
several other pathways for the formation of meso-2,3-BD 
were suggested. The pathways include spontaneous reac-
tion (acetoin to diacetyl), non-specific reactions by other 
dehydrogenases, and cyclic pathways [12, 15, 27]. Yang 
et al. recently reported that the budC-deleted K. oxytoca 
strain produced large amount of acetoin, but this strain still 

formed a high level of 2,3-BD via the alternative pathways 
[30].

From the total quantity of 2,3-BD produced, the K. oxy-
toca ΔldhA ΔpflB ΔbudC::PBDH (pBBR-PBDH) strain 
yields over 92 % (R,R)-2,3-BD, thus helping to overcome 
difficulties in industrial applications whereby transporta-
tion and storage of 2,3-BD results in high freezing of meso-
2,3-BD in cold weather. Furthermore, the high concentra-
tion, high yield, and high productivity of the (R,R)-2,3-BD 

Fig. 2  GC analysis results of a standard solution and fermentation 
samples from b K. oxytoca ΔldhA ΔpflB and c K. oxytoca ΔldhA 
ΔpflB ΔbudC::PBDH strains. (R,R)-2,3-BD, meso-2,3-BD, and (S,S)-
2,3-BD were determined by a gas chromatograph with flame ioniza-
tion detector (GC-FID; HP 6890 series, Hewlett Packard, Palo Alto, 
CA, USA) equipped with a HP-chiral 20ß column (30 m, 0.32-mm 

internal diameter, 0.25-μm film thickness; Agilent Technologies, 
Waldbronn, Germany). The GC analysis showed that the K. oxytoca 
ΔldhA ΔpflB and K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH strains 
could produce 2,3-BD with over 90 % meso-2,3-BD and over 90 % 
(R,R)-2,3-BD, respectively
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production system may be widely applied in the agricul-
tural and gardening sectors as an eco-friendly alternative.
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